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The recently proposed partition theory (PT) (J. Phys. Chem. A 2007, 111, 2229.) is illustrated on a simple
one-dimensional model of a heteronuclear diatomic molecule, 1DAB. It is shown that a sharp definition for
the charge of molecular fragments emerges from PT and that the ensuing population analysis can be used to
study how charge redistributes during dissociation and the implications of that redistribution for the dipole
moment. Interpreting small differences between the isolated parts’ ionization potentials as due to environmental
inhomogeneities, we gain insight into how electron localization takes place in H2

+ as the molecule dissociates.
Furthermore, by studying the preservation of the shapes of the parts as different parameters of the model are
varied, we address the issue of transferability of the parts. We find good transferability within the chemically
meaningful parameter regime, raising hopes that PT will prove useful in chemical applications.

1. Introduction

Consider a molecule of composition AB with parts A and B
having different ionization potentials when isolated. A long-
standing problem is how to associate charges with each part as
the parts are separated. At intermediate separations, one expects
that, as bonding electrons would spend unequal time in the
vicinity of each part, one would have to assign noninteger
average numbers of electrons to each, numbers that become
integers at infinite separation. Density functional theory (DFT)
is defined only for integer electron numbers as originally
developed.1,2 If the dependences of the energy functionals of
integer DFT on electron density were continued to densities
containing noninteger electron numbers and applied to the
separation of AB into A + B, at infinite separation, A and B
would have unphysical noninteger electron numbers, as pointed
out by Perdew et al. (PPLB).3,4 Instead, PPLB argued that an
ensemble generalization of ground-state DFT should be used
for systems with noninteger electron numbers.

With how to treat noninteger electron numbers resolved by
PPLB, the issue of how rigorously and systematically to
decompose a system into its parts remains.5,6 Two of the present
authors have proposed an exact scheme, partition theory (PT),7-9

based on the PPLB ensemble DFT. In ref 9, their PT was
brought to full formal development and used for a reconstruction
of chemical reactivity theory, which eliminated the inconsisten-
cies of earlier formulations and enriched them. Applying PT to

the case introduced above, AB f A + B, the parts would
obviously be A and B.

To illustrate the conceptual structure and physical content of
PT, a very simple system was studied in ref 10, a caricature of
the hydrogen molecule consisting of two electrons moving in
one dimension under the influence of two attractive δ-function
potentials of equal strength, 1DH2. Because each part contains
in that case exactly one electron for all internuclear separations,
invoking the PPLB ensemble was not necessary in ref. 10, thus
closely following previous calculations of Guse11 on H2 and
H2

+. We obtained analytic solutions for the quantities that he
found numerically. In the present paper, a corresponding model
of a heteronuclear diatomic molecule AB is studied via PT
(1DAB). The model once again consists of two noninteracting
electrons moving in one dimension under the influence of two
attractive δ-function potentials of unequal strengths -ZA and
-ZB with ZB < ZA. Because a one-electron B-atom would tend
to donate its electron to the more electronegative A-atom when
brought together, A can be thought of as a Lewis acid and B as
a Lewis base.

In the limit ZA ) ZB ) Z, the model becomes that treated in
ref 10. Moreover, reducing the number of electrons from two
to one requires little modification of that analytic theory, and
its numerical results can be used to examine the dependence of
charge transfer on ZA - ZB and inter“nuclear” separation. The
resulting theory can also be used to explore how symmetry
breaking localizes the single electron of A2

+ when it is separated
into A and A+, a subtler problem than the localization of both
electrons on A when AB f A- + B+.† Part of the “Max Wolfsberg Festschrift”.

J. Phys. Chem. A 2009, 113, 2183–2192 2183

10.1021/jp807967e CCC: $40.75  2009 American Chemical Society
Published on Web 02/12/2009



In section 2, the formalism developed for the 1DH2 problem
in ref 10 is extended to the present 1DAB problem. Numerical
results are given in section 3 for the dependence of the electron
densities of the parts, for the charge transfer from A to B, and
for the dipole moment as functions of ZA, ZB, and the inter
“nuclear” separation R. Results are also given there for the
partition potential of PT, and how it induces electronegativity
equalization between the parts is discussed. The transferability
of the properties of the atoms is discussed as well. The united-
atom limit, of more academic interest than chemical relevancy,
is discussed separately at the end of section 3. Section 4 is
devoted to the one-electron molecule 1DAB+. The case ZA V ZB

is used to show how trivial symmetry breaking, ZA - ZB , ZA,
is sufficient to localize the electron on A, illustrating how real
H2

+ separates into H + H+ because of small environmental
perturbations. We conclude in section 5 with a brief discussion
of the significance of these very simple illustrations of the power
and utility of PT for population analysis and for the transfer-
ability of fragments with their properties between different
molecular contexts. Detailed derivations of all analytic results
are presented in an Appendix.

2. 1DAB; Independent Electrons Moving in Unequal
δ-Function Potentials in One Dimension

A. The Molecule. In ref 10, we considered an analogue of
the H2 molecule in which two noninteracting electrons move
in one dimension under the influence of two δ-function
potentials of equal strength -Z. In the present section, we
consider the heteronuclear analogue 1D AB in which the nuclear
δ-function of the acid A is of strength -ZA and that of the base
of strength -ZB, with ZA > ZB. These “nuclear charges” are
allowed to vary continuously. The ground-state wave functions
ψR

0(x) and energies ER
0 of the isolated “atoms” R ) A, B are

(atomic units are used throughout) as follows:

ψR
0(x)) √ZRexp[-ZR|x|], (2.1)

ER
0 )-ZR

2 ⁄ 2. (2.2)

The ground-state energy EM(NM ) 1) of one electron moving
in the two δ-functions, that of strength -ZA at x ) -R/2 and
that of strength -ZB at x ) R/2, is -κ2/2, where

(κ- ZA)(κ- ZB)) e-2κRZAZB. (2.3)

The solutions of eq 2.3 are plotted as a function of internuclear
separation in subsection A of the Appendix. From here on, we
are concerned only with the lowest-energy solution, denoted
simply as κ, which corresponds to a bonding state that is doubly
occupied when NM ) 2.

The corresponding ground-state wave function, ψM(x), is

ψM(x))Ceκ(R⁄2+x), x <-R ⁄ 2,

)Deκx +Fe-κx, - R ⁄ 2 < x < R ⁄ 2,

)Geκ(R⁄2-x), R ⁄ 2 < x, (2.4)

where C, D, F, and G are constants whose explicit expressions
in terms of ZA, ZB, R, and κ are given in subsection A of the
Appendix (eqs A.1 and A.2). In the combined-atom limit R V 0,
G ) C ) κ1/2, and D and F are irrelevant. In the limit R v ∞, C
) κ1/2, D ) e-κR/2κ1/2, and G ) F ) 0 so that ψM(x) is localized
on A only.

The two-electron molecular density is

nM(x)) 2|ψM(x)|2; (2.5)

the total energy of the molecule M is

EM(NM ) 2)) 2EM(NM ) 1))-κ
2; (2.6)

and the chemical potential of the molecule is

µM )EM(2)-EM(1))-κ
2 ⁄ 2, (2.7)

all just as for the 1DH2 case of ref 10. Figure 1 shows the
dependence of nM(x) on internuclear distance R for ZA ) 1.02,
ZB ) 0.98. For these only slightly different values of ZA and
ZB, the transition from primarily ionic character (right panel)
to mixed ionic-covalent character (center panel) occurs at a
relatively large bond length R ∼ 3.2. The left panel of Figure
1 shows a density belonging to the interesting but less
chemically meaningful united-atom regime, a regime that we
discuss separately in subsection 2D because it allows us to draw
conclusions regarding the limits of utility of PT.

B. The Parts. Our task is to partition nM(x) into contributions
from the two parts of M, fragments A and B,

nM(x)) nA(x)+ nB(x), (2.8)

with nA,B localized primarily around -R/2, R/2, respectively.
Because ψM and therefore nM is larger near A than near B (recall
that ZA > ZB), the electron numbers of the fragments,

NA,B )∫ dxnA,B(x), (2.9)

are unequal with NA > NB and

NA +NB )NM ) 2. (2.10)

NA,B are nonintegers in general so that eq 2.1 implies that

NA ) 2- ν, NB ) ν, 0e νe 1, (2.11)

and the PPLB ensemble3 must be used for the fragments. In
this use of the PPLB ensemble lies the main difference with
Parr’s atoms-in-molecules approach based on a minimum
promotion energy criterion.11 For A, a singly occupied state of
either spin occurs with probablility ν/2, and a doubly occupied

Figure 1. Molecular density for three different internuclear separations: R ) 0.4 (left), R ) 2.0 (center), and R ) 4.0 (right). In this plot, ZA )
1.02, and ZB ) 0.98.
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state occurs with probability 1 - ν in the PPLB ensemble. For
B, an unoccupied state occurs with probability 1 - ν and a
singly occupied state of either spin occurs with probability ν/2.
The densities of the fragments are, accordingly,

nA(x)) (2- ν)ψA
2(x), nB(x)) νψB

2(x), (2.12)

where ψR(x) (R ) A, B) is a real one-electron wave function
localized around -R/2, R ) A, or +R/2, R ) B. Analytic
expressions for the ψR(x) are derived in subsections B-D of
the Appendix. They can be written most simply as:

ψA(x)) (2- ν)-1/2ψM(x)[cos �(x)+ sin �(x)], (2.13)

ψB(x)) ν-1⁄2ψM(x)[cos �(x)- sin �(x)], (2.14)

where �(x) is an auxiliary polar-angle function that determines
ν according to

ν) 1-∫ dxψM
2 (x) sin 2�(x), (2.15)

as shown in detail in subsection B of the Appendix. The
corresponding measure of electron transfer q is

q) 1- ν)∫ dxψM
2 (x) sin 2�(x) (2.16)

In PT, the wave functions and densities of the parts are found
by minimizing the sum of the energies of the individual parts
subject to the constraints that the electron densities and numbers
of the assembly of parts are identical to those of the molecule
M. The expressions for ψA(x) and ψB(x) of eqs 2.13 and 2.14,
together with eqs 2.11 and 2.12, guarantee that the constraints
are met for 1DAB. Only the determination of �(x) remains, and
the procedure for determining it by minimizing the sum of the
energies of the fragments is described in subsections C and D
of the Appendix.

Numerical evaluation of the quantities of interest, ν, �(x),
and ψR(x), is straightforward for representative ZR and various
R. For example, Figure 2 shows the fragments’ atomic densities
for ZA ) 1.05, ZB ) 0.95, and R ) 2. Interestingly, in spite of
having high electron density in the bonding region around the
molecule’s center of mass, the fragment densities resemble true
atomic densities. This is one of the most significant results of
our work. To investigate the extent to which this is true and to
quantify it, results for different parameter regimes are reported
and discussed in the next section. First, however, we discuss in
the following subsection how the partition potential VP(x) of
PT can be extracted from these results.

C. The Partition Potential. Within the framework of PT,9

the wave functions ψR(x) for the parts R ) A, B satisfy the
Schrödinger equation

[HR+ υP(x)]ψR(x)) µMψR(x), R)A, B, (2.17)

where the Hamiltonians HR for the parts are defined by eq A.11.
The partition potential VP(x) is the same for both parts, as is the
eigenvalue µM, corresponding to the molecular chemical po-
tential, eq 2.7. We construct VP(x) in subsection E of the
Appendix, obtaining:

υP(x))-1
2

ZA
2ψM

4 (-R ⁄ 2) cos2 2�A

ψM
4 (x)

θ(R ⁄ 2- |x|)+

1
2∑R υR[1- sR tan �R(1+ cos 2�R)], (2.18)

where �R (R ) A, B) are constants that determine the upper
and lower bounds of �(x) (derived in subsection D of the
Appendix), sR ) (1 (plus sign for part A and minus sign for
part B), and θ(y) ()0 for y < 0, )1 for y > 0) is the Heaviside
step function. Numerical results for VP(x) are presented and
discussed in the next section.

3. Illustrative Results

For purposes of discussion, we define three critical param-
eters, RIP, Rden, and Rocc, as the values of R at which significant
changes in the ionization potential, the density, and the
occupation of a fragment, respectively, take place. Our defini-
tions for RIP and Rden are immediately applicable to any diatomic
molecule, and our definition for Rocc could be easily generalized
to be applicable to any diatomic molecule. We start by defining
Rocc in subsection A to discuss population analysis and charge
transfer and continue in subsection B with Rden and RIP to address
the issue of transferability.

A. Population Analysis; Charge Transfer. First, note that
q ) 1 - ν of an electron is transferred from B to A. Figure 3
shows how ν changes when R is varied for four different values
of ∆Z (and Zj ) 1) for R > 1, and Figure 14 does this for smaller
R as well. Define Rocc as the larger of the two values of R for
which NA ) 2NB (and therefore ν ) N/3), a reasonable criterion
for the ionic to mixed ionic-covalent crossover. The solid curve
in Figure 9 displays the behavior of Rocc vs ∆Z. We observe
that Rocc is a sensitive function of ∆Z, especially as ∆Z f 0.
(We come back to this point in the next paragraph and in section
4 when discussing electron localization in H2

+ as the molecule
dissociates.) This is a simple illustration of the utility of PT to
quantify the degree of charge transfer taking place as a
heteronuclear diatomic molecule is stretched out. That charge
transfer occurs is readily seen from the sequence of molecular

Figure 2. Molecular density nM(x) (solid), and fragment densities nA(x)
(dotted) and nB(x) (dashed) for ZA ) 1.05, ZB ) 0.95, and R ) 2. For
these values, ν ) 0.6, indicating substantial charge transfer even with
only a 10% difference between ZA and ZB and a small R.

Figure 3. Population of fragment B ()ν) for various values of ∆Z,
for Zj ) 1.
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densities plotted in Figure 1, and PT provides an unambiguous
way to characterize it.

This R-dependence of ν is interpretable as a sequence of
crossovers in the electronic structure of the molecule M. At large
R, M is ionic with ν V 0 and q v 1. As R decreases, there is a
crossover around Rocc from that ionic to a mixed ionic-covalent
state. As R decreases further, the covalent character of that
mixed state increases. At still smaller R, there is another
crossover to a combined-atom state around the maximum in ν.
Finally, at very small R, there is a rapid crossover back to the
ionic state, an interesting fact that we discuss further in
subsection E.

It is also of interest to examine how well the product of
transferred charge with the internuclear separation agrees with
the actual electronic component of the dipole moment of the
molecule. Figure 4 compares this point-charge dipole (PC)

dPC )-qR, (3.1)

with the actual electronic part of the dipole moment d ) ∫ dx
xnM(x) for various values of ∆Z. If the fragment densities were
inversion-symmetric about their “nuclei”, there would be exact
agreement between dPC and d, but there is in addition a dipole
moment on each fragment from the polarization of its electron
cloud, dR ) ∫ dx xnR(x), d ) dPC + dA + dB. Figure 5 shows
d(R) along with the fragment dipoles dR(R), R ) A, B, for fixed
∆Z. Clearly, when ∆Z ) 0.04, the fragment dipoles are small
as compared to the molecular dipole only for separations larger
than R ∼ 3. The estimate (eq 3.1) shows excellent agreement
whenever the dipole is significant and only fails (error >20%)
when the dipole is small (Figure 5). Note also from the inset of
Figure 4 that the R-dependence of the percent difference changes
little when ∆Z changes from 0.01 to 0.12. Figure 5 shows that
dA is of opposite sign to dB and dPC. This sign reversal arises

from the distortion of nA by covalency, which increases it in
the bonding region. However, in 1DAB, dA is not large enough
in magnitude to overcome dB + dPC, even at small R. If it were,
d would be of sign opposite to that expected from the
electronegativity difference of A and B. In real diatomic
molecules containing small bases, such sign reversals are
observed,12 and PT promises a simple explanation.

B. Transferability. The mixed covalent to ionic crossover
occurs at quite small R for very small ∆Z when Zj ) 1. For the
crossover to occur at an internuclear separation of about 1 Å,
∆Z need only be about 0.09. The shape of each atom, however,
is not as sensitive. Figure 6 shows ψA(x) (solid) and ψB(x)
(dotted) for two different separations and three different values
of ∆Z covering the same range as that of Figure 3. It is apparent
that orbitals corresponding to different values of ∆Z start
differing significantly only close to the region where ψA(x) and
ψB(x) overlap (the “bonding” region) and only for large
internuclear separations R J 3. Because at large internuclear
separations the orbitals ψR(x) become equal to the isolated
solutions ψR

0(x) of eq 2.1, it is interesting to examine how and
when the ψR(x) start departing from the ψR

0(x). Figure 7 shows
that for ∆Z ) 0.08, ψA(x) is almost identical to ψA

0(x) when R
) 4.8, differing only slightly in its right-hand tail and that the
shape is still preserved for chemically relevant values like R ∼
1.6. To appreciate the differences more clearly, Figure 8 displays
the differences of the squares D(x) ≡ ψA(x)2 - [ψA

0(x)]2. We
observe that the two orbitals depart appreciably when the spatial
integral of the absolute value of this quantity reaches a value
of ∫ dx|D(x)| ∼ 0.2, so we define Rden as the corresponding

Figure 4. Electronic dipoles as a function of inter “nuclear” separation,
both from the point-charge value of eq 3.1 (solid lines), and exactly
(dashed) for three different values of ∆Z. The inset shows the absolute
percent difference; Zj ) 1.

Figure 5. Electronic dipole moment for the 1DAB molecule (solid)
and fragment dipole moments for fixed ∆Z ) 0.04 and Zj ) 1.

Figure 6. Fragment orbitals ψA(x) (solid) and ψB(x) (dotted) for
different values of R (1 and 3). The fragment-A orbitals are plotted for
three different values of ∆Z (0.04, 0.08, and 0.12). Orbitals corre-
sponding to different values of ∆Z start to differ in the overlapping
region only for large internuclear separations, R J 3. Differences due
to changes in ∆Z are indistinguishable to the eye for R j 3. The inset
zooms in on the R ) 1 curves around x ) R/2 to show the cusp present
in the A-fragment at the position of the B-“nucleus’’.

Figure 7. Comparison of fragment orbital ψA(x) (solid line) and
isolated atomic orbital ψA

0(x) (dotted) for R ) 4.8 and R ) 1.6. The
inset shows the slow variation of Rden with ∆Z (see the text).

2186 J. Phys. Chem. A, Vol. 113, No. 10, 2009 Cohen et al.



separation. As shown in the inset of Figure 7, Rden remains
almost constant at Rden ∼ 0.66, small as compared to Rocc in
the corresponding range of ∆Z. A similar behavior is observed
for RIP, which we define as the value of R at which the ionization
potential of the molecule begins to differ significantly (20%)
from the ionization potential of the most electronegative
(isolated) atom. Figure 9 compares Rocc, RIP, and Rden. The
preservation of the shape of the orbitals in a range of ∆Z where
there is signficant charge transfer (Rden , Rocc) is a strong
indication of the transferability of the fragments emerging from
PT.13 The feature of transferability can also be seen for fixed

∆Z by comparing fragments corresponding to different values
of R. Figure 10 shows such a comparison for ∆Z ) 0.06 by
overlapping the ψA(x)’s corresponding to different R’s (this
requires shifting the origin of A-atoms to the left and the B-atoms
to the right). We note that even though the size of the fragments
(controlled by ν) changes substantially as R varies from 1 to 4,
their shape is quite insensitive to relatively large changes in R
with concomitantly large changes in nM(x) and µM. For the value
of ∆Z chosen in Figure 10, ν is only about 0.2 when R ) 4;
yet, the shapes of the corresponding fragments only differ
slightly from those obtained when R ) 1 and ν is close to 0.9.

C. Partition Potentials. The corresponding partition poten-
tials are shown in Figure 11. Both parts A and B must have
equal electronegativities, sharing the same HOMO eigenvalue,
eq 2.17, which must be equal to the overall chemical potential
µM. The partition potential ensures that this happens by acquiring
a specific form, with an asymmetric negative well in between
the fragments and two negative δ-functions at (R/2. In the limit
of infinite separation, when k f ZA, the external potential of
“nucleus’’ A does not require any correction in order to reach
µM, but the external potential of “nucleus” B does. Accordingly,
the δ-function component of νP vanishes on A at infinite
separation but not on B (Figure 13). It is negative there and has
a magnitude smaller than ∆Z because the smooth negative well
persists at large separations, getting further from A and closer
to B (Figures 11 and 12), thereby contributing to the lowering
of the eigen-energy of part B toward µM. Figure 12 shows a
closer view of the dependence of the smooth part of the partition

Figure 8. Difference between the fragment density on A and the
isolated atomic density, [(ψA

0(x)]2 - ψA
2(x), for different values of R

(from 1.6 to 4.8 in steps of 0.8) and fixed values of ∆Z ) 0.08 and Zj
) 1.

Figure 9. Comparison of Rocc (value of R at which the occupation on
A is twice the occupation on B), RIP (at which the ionization potential
of the molecule is 20% larger than the ionization potential of an isolated
A atom), and Rden (at which the fragment densities change significantly
as compared to the corresponding isolated-atom densitiesssee the text).
All curves with Zj ) 1.

Figure 10. Fragment orbitals ψA(x) and ψB(x) for R ) 4 (solid), R )
2 (dotted), and R ) 1 (dashed), when ZA ) 1.03 and ZB ) 0.97. The
A-fragment corresponding to R ) 2 was shifted to the left by 1 a.u.,
and the B-fragment was shifted to the right by 1 a.u. The A-fragment
corresponding to R ) 1 was shifted to the left by 1.5 a.u., and the
B-fragment was shifted to the right by 1.5 a.u.

Figure 11. Left panels: A- and B-fragments: ψA(x) ) �nA(x)/(2 - ν)1/2

(solid) and ψB(x) ) �nB(x)/ν1/2 (dashed) for R ) 4 (upper), R ) 2
(center), and R ) 1 (bottom). Right panels: corresponding partition
potentials (δ-functions at (R/2, not shown). For all of these plots, ZA

) 1.03, and ZB ) 0.97.

Figure 12. Smooth part of the partition potential for two different
values of R and ∆Z ) 0.04 (solid), ∆Z ) 0.08 (dashed), and ∆Z )
0.12 (dotted). For all of these curves, Zj ) 1.
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potential with ∆Z and with R, and Figure 13 illustrates the same
dependences for the amplitudes of its δ-function components.

D. United-Atom Limit. To focus attention on the chemically
relevant range of internuclear separations, we started Figure 3
at R ) 1. The small R behavior of ν can be seen in Figure 14.
Perhaps counterintuitively, as R decreases below a given (small)
value, a rapid crossover takes place from a mixed ionic-covalent
state to an essentially ionic state. In the 1DH2 model of ref 10,
this reversion to the ionic state is absent, the sequence of
crossovers being atomic to covalent to combined-atom state.
There is a singularity in the 1DAB model at ∆Z ) 0, R ) 0. If
limR,∆Z V 0{(∆Z)/(R)} V 0, the combined-atom state persists to R
) 0. If, however, limR,∆Z V 0{(R)/(∆Z)} V 0, a reversion to the
ionic state occurs. This counterintuitive feature illustrates an
important limitation to the utility of PT. When κR becomes
significantly less than unity as R decreases, the ψR(x) overlaps
substantially, and the primary motivation of PT, decomposition
of the electron density into distinct localized components, is
frustrated.

The shape of the fragment densities also departs significantly
in this limit from pure atomic densities. For example, for the
same value of ∆Z ) 0.08 used in Figure 8, the maximum value
of the difference between ψA(x)2 and ψA

0(x)2 when R ) 0.4 is
about six times larger than the corresponding maximum when
R ) 1.6.

4. Electron Localization in Dissociating H2
+

Even though the ground-state wave function of H2
+ is

symmetric, with 50% of its amplitude on the right atom and
50% on the left, the slightest asymmetry due to environmental
perturbations forces the electron to localize onto one of the two

nuclei as the molecule dissociates. Because this symmetry
breaking can now be studied experimentally via intense few-
cycle laser pulses with controlled field evolution,14 there is
resurgent interest in theoretical models to describe electron
localization during molecular dissociation (see, for example, ref
15 for a recent study of dissociation and ionization of small
molecules steered by external noise). Our simple theory of the
preceding sections can be used as such a model, provided we
interpret small differences between the magnitudes of ZA and
ZB as due to the effect of an inhomogeneous environment. In
fact, because we have dealt with two noninteracting electrons,
only minor modifications of our results are needed to analyze
the one-electron case, 1DAB+:16 The chemical potential is still
identical to that given by eq 2.7. The number constraint of eq
2.10 is modified to NM′ ) 1 (we use primed symbols to represent
one-electron quantities to distinguish them from their two-
electron analogues), and eq 2.11 goes to:

NA
′) 1- ν′, NB

′) ν′, 0e ν′e
1
2

. (4.1)

The densities of the atoms are

nA
′(x)) (1- ν′)ψA

2(x), nB
′(x)) ν′ψB

2(x), (4.2)

and following the same steps leading to eq 2.15, we find

ν′) 1
2[1-∫ dx ψM

2 (x)sin 2�′(x)]. (4.3)

Because the Euler equation for �(x), eq A.15, as well as the
boundary conditions, remain unchanged, �′(x) ) �(x), and the
values that ν′ takes as a function of R and ∆Z are simply half
of those calculated for 1DAB, ν′ ) ν/2. As before, we define
Rocc′ as the value of R for which NA′ ) 2NB′, corresponding to
ν′ ) 1/3 (from eq 4.1 and NA′ + NB′ ) 1). The behavior of Rocc′
as a function of ∆Z is then identical to that of Rocc(∆Z). The
inset of Figure 15 shows that for small ∆Z, Rocc is proportional
to ln ∆Z. We conclude that the more inhomogeneous the
environment (the larger ∆Z), the earlier electron localization
occurs along the dissociation pathway, with a logarithmic
dependence in this case. As Rocc becomes very large when ∆Z
becomes small, this striking relation between Rocc and ∆Z
follows from a simple tight-binding argument outlined in the
Appendix (subsection F).

5. Concluding Remarks

We have applied PT9 to a simple model of a heteronuclear
diatomic molecule. We found analytic expressions for the
densities of the parts, the charge associated with each of the

Figure 13. δ-Function weights of the partition potential, for ∆Z )
0.04 (solid), ∆Z ) 0.08 (dashed), and ∆Z ) 0.12 (dotted). The three
upper curves correspond to atom A, and the three bottom ones
correspond to atom B. For all of these curves, Zj ) 1.

Figure 14. Same as Figure 3 with added small-R range to illustrate
striking united-atom behavior of ν (see the text).

Figure 15. Behavior of Rocc
′ for 1DAB+ when Zj ) 1. The inset shows

Rocc
′ vs ln ∆Z. The line corresponds to the best linear fit in the range

-9 e ln ∆Z e -5 (slope, -0.185; intercept, -0.502, agreeing with
the tight-binding formula derived in the Appendix, eq A.43).
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molecular fragments, and the partition potential that guarantees
electronegativity equalization. Numerical calculations for various
parameter regimes allow us to reach important conclusions: (1)
Rocc has a strikingly different bahavior than RIP and Rden as ∆Z
f 0 (Figure 9). Because Rocc measures the value of inter-
“nuclear” separation at which significant charge transfer occurs
and Rden and RIP measure the value of R at which signifcant
change in the shape of the fragment wavefunctions takes place,
we conclude that the fragments of PT, at least within this simple
model, are to large extent transferrable. (2) Environmental
fluctuations (modeled by small finite ∆Z) localize the single
electron of H2

+ onto one of the two nuclei. As H2
+ dissociates,

the more inhomogeneous the environment, the earlier localiza-
tion occurs along the dissociation pathway. The explicit results
reported both here and in ref10 both illustrate important features
of PT9 and support the proposed use of PT for a broad range of
applications to real systems, including the sharp definitions of
parts of a larger system, population and charge-transfer analysis,
and the examination of transferability.

Appendix

A: The Molecule

Equation 2.3 has two solutions for all R < (ZA + ZB)/2ZAZB ≡
R*: one, κ+, belonging to a bonding state doubly occupied when
N ) 2, and another one, κ0 ) 0, belonging to a state at the
bottom of the continuum. For all R > R*, there is another
solution, κ-, corresponding to an unoccupied antibonding state.
As R v ∞, κ+ and κ- give rise to the two energies EA,B

0 of eq
2.2, corresponding to the two states ψA,B

0 (x) of eq 2.1, of which
the lower state ψA

0(x) localized to the Lewis acid A is doubly
occupied, the Lewis base B having donated its electron. As R
V 0, κ+ approaches ZA + ZB and gives rise to a doubly occupied
combined-atom state with the ZR of eqs 2.1 and 2.2 replaced
by ZA + ZB. The value of κ+ decreases monotonically from ZA

+ ZB at R V 0 with finite derivative at zero and vanishing
derivative at infinity. κ- increases monotonically from zero at
R V R* to ZB at R v ∞. κ0 remains zero throughout (see Figure
16). In the text following eq 2.3, we referred only to κ+,
dropping the subscript + for notational simplicity.

The R dependences of all three solutions of eq 2.3 for κ are
shown in Figure 16 for ZA ) 1 and ZB ) 0.9. Note that κ+
begins to differ significantly from κ+(∞) only at separation R

< RIP ∼ 1.8, less than relevant for real molecules, except for
H2. For example, for ZA ) 1 and ZB ) 0.9, one gets from eqs
2.3 and 2.7 an ionization energy equal to that of lithium hydride
(LiH), for which the equilibrium bond distance is R0 ) 3.05
(.RIP).

Finally, the constants of eq 2.4 are given in terms of ZA, ZB,
R, and κ, by:

D) eκR⁄2(1- ZA ⁄ κ)C

F) eκR⁄2(ZA ⁄ κ)C,

G) eκR[(κ- ZA ⁄ ZB)]C

(A.1)

C) (2κ)1⁄2{ ZA(κ- ZA)

ZB(κ- ZB)(1+
ZB

2

κ
2 )- e-2κRZA

2

κ
2

+

2ZA

κ
[1+ 2R(κ- ZA)]} -1⁄2

. (A.2)

B: The Polar Angle �(x)

Substituting eqs 2.12 and 2.5 into eq 2.8 leads to

(2- ν)ψA
2(x)+ νψB

2(x)) 2ψM
2 (x). (A.3)

Equation A.3 can be rewritten as

�A
2(x)+ �B

2(x))ψM
2 (x), (A.4)

where

�A(x)) (1- ν ⁄ 2)1⁄2ψA(x), �B(x)) (ν ⁄ 2)1⁄2ψB(x),

(A.5)

which permits us to take over the analytic procedures of ref 10.
We first rotate �A(x) and �B(x) by π/4 in the function space in
which they are defined, introducing

�((x)) 1

√2
[�A(x)( �B(x)] (A.6)

and leaving “lengths” within that space invariant so that

�+
2 (x)+ �-

2 (x))ψM
2 (x). (A.7)

Finally, we introduce the polar angle � ) �(x) in the function
space,

�+(x))ψM(x) cos �(x), �-(x))ψM(x) sin �(x), (A.8)

�A,B(x)) 1

√2
ψM(x)[cos �(x)( sin �(x)] (A.9)

because �A,B(x) are non-negative, |�| cannot exceed π/4.
Inserting eq A.9 into eq A.5 and subtracting the squares of

the two resulting equations leads to an expression for ν, eq 2.15:

ν) 1-∫ dx ψM
2 (x) sin 2�(x), (A.10)

after integrating over x. Determination of the polar angle �(x)
is thus sufficient for the determination of ν (charge transfer)
and the electron population of the fragments (population
analysis). For the symmetric 1DH2 case, �(x) is odd and ψM(x)
even so that the integral in eq 2.15 vanishes, yielding ν ) 1
and equally populated fragments. In the present case, because
ψM(x) is normalized to unity and |sin 2�(x)|e 1 with the domain
of positive �(x) weighted more heavily than that of negative
�(x), the integral in eq 2.15 lies in (0, 1), as must ν in accordance
with eq 2.11.

Figure 16. κ vs R for AB with ZA ) 1 and ZB ) 0.9. The upper curve
shows the dependence of κ for the doubly occupied orbital of the ground
state, which goes over from ionic on A at infinite R through mixed
ionic-covalent to combined-atom at small R. The lower curve shows
that of κ for the empty orbital of the excited state, which changes from
atomic on B at infinite R to antibonding at intermediate R and disappears
for R < R*; κ0 ) 0 is also a solution of eq 2.3. The vertical dotted line
indicates the separation RIP at which κ begins to differ significantly
(by 10%) from κ+(∞).
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C: The Euler Equation for �(x)

In PT,9 a Hamiltonian is assigned to each part for each integer
number of electrons entering into its PPLB ensemble. Because
our “electrons” do not interact, it is sufficient to assign a one-
electron Hamiltonian to each part,

HR)
p2

2
+VR(x), VA,B(x))-ZA,Bδ(x(R ⁄ 2). (A.11)

The PPLB energy functional of the collection of parts is then

E) (2- ν)(ψA, HAψA)+ ν(ψB, HBψB)

) 2[(�A, HA�A)+ (�B, HB�B)]. (A.12)

Inserting the transformation (eq A.9) and the definition (eq A.11)
of HR into eq A.12 results in

E)∫ dx {ψ′
M
2 (x)+ψM

2 (x)[�′(x)2 +VA(x)+VB(x)+

[VA(x)-VB(x)] sin 2�(x)]} (A.13)

for the energy functional E, now a functional only of �(x). In
eq A.13 and in the following, primes indicate derivatives with
respect to x.

Varying E with respect to �(x) yields

δE) 2∫ dx ψM
2 (x){�′(x)δ�′(x)+

[VA(x)-VB(x)] cos 2�(x)δ�(x)}. (A.14)

The usual integration by parts leads to

δE) 2{ ψM
2 (x)�′(x)δ�(x)|x)-∞

x)∞ +∫ dx[- d
dx(ψM

2 (x)
d�(x)

dx )+
ψM

2 (x)[υA(x)- υB(x)] cos 2�(x)]δ�(x)} (A.15)

The Euler equation

- d
dx[ψM

2 (x)
d�(x)

dx ]+ψM
2 (x)[VA(x)-VB(x)] cos 2�(x)) 0

(A.16)

and the boundary conditions

ψM
2 (x)�′(x)δ�(x)|-∞

∞ )0 (A.17)

result from imposing stationarity on E. At first glance, it might
seem that eq A.17 is satisfied automatically since ψM

2 (x) V 0 as
|x| v ∞. However, unless the boundary condition

�′(x)) 0, |x|)∞ (A.18)

imposed, �′(x) diverges unacceptably as ψM
-2(x) as |x| v ∞.

D: Solving for �(x)

Because the υR(x) are δ-function potentials, eq A.16 reduces to

d
dx[ψM

2 (x)
d�(x)

dx ]) 0 (A.19)

with the additional boundary conditions

{ �(-1
2

R+)) �(-1
2

R-) ≡ �A

�′(-1
2

R-)- �′(-1
2

R+)) ZA cos 2�A } x)-1
2

R,

(A.20)

{ �(1
2

R-)) �(1
2

R+) ≡ �B

�′(1
2

R-)- �′(1
2

R+))-ZB cos 2�B } x) 1
2

R. (A.21)

The general solution of eq A.19 is

d�(x)
dx

)
R1

ψM
2 (x)

, (A.22)

�(x))∫x
dx′

R1

ψM
2 (x ′ )

+R2, (A.23)

with the constants R1 and R2 taking on different values in the
three domains |x| > R/2, -R/2 < x < R/2. The condition (eq
A.18) implies that R1 and �′(x) vanish for |x| > R/2 so that

�(x)) �A, x <-R ⁄ 2 and �(x)) �B, x > R ⁄ 2. (A.24)

The conditions (eq A.20) and (eq A.21) imply that

R1 )-ZAψM
2 (-R ⁄ 2) cos 2�A )

- ZBψM
2 (-R ⁄ 2) cos 2�B, |x| < R ⁄ 2 (A.25)

From eq A.20, R2 is �A when the lower limit in eq A.23 is set
at -R/2, yielding a second relation between �A and �B,

�B - �A )R1∫-R⁄2

R⁄2 dx

ψM
2 (x)

(A.26)

Inserting the explicit form (eq 2.4) for ψM(x) into the integral
in eq A.26 results in

∫-R⁄2

R⁄2 dx

ψM
2 (x)

) 1
2 κ D [ eκR⁄2

ψM(-R ⁄ 2)
- e-κR⁄2

ψM(R ⁄ 2)] (A.27)

Taken together, eqs A.25-A.27 fix the values of �A,B, determin-
ing �(x) for |x| > R/2, and eq A.23 then determines �(x) for |x|
< R/2. Figure 17 shows �(x) for various values of R and ∆Z,
illustrating our qualitative discussion following eq A.10. Charge
transfer is associated with the departure of �(x) from perfect
odd symmetry, as can be seen by direct inspection of eq 2.15.
This departure gets more pronounced as R and ∆Z increase,

Figure 17. Plot of �(x) for three different values of R (1, 2, and 4),
and ∆Z ) 0.04 (solid) and ∆Z ) 0.08 (dashed). For all curves, Zj )
1/2(ZA + ZB) ) 1.
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signaling the transition from covalent to mixed-ionic-covalent
character of the chemical bond, as discussed in the text.

E: The Partition Potential

Because the �R(x) is proportional to the ψR(x), eq A.5, they
satisfy the same Schrödinger equations (eq 2.17). Summing over
R and dividing by �A(x) + �B(x) yields

υp(x)) µM - 1
�Α(x)+ �B(x)

p2

2
[xA(x)+ xB(x)]-

υA(x)�A(x)+ υB(x)�B(x)

�Α(x)+ �B(x)
. (A.28)

Expressing �A(x) and �B(x) in terms of �+(x) and �-(x) via eq
A.6 and using eq A.8 results in

υP(x)) µM + 1
2ψM(x) cos �(x)

d2

dx2
[ψM(x) cos �(x)]-

1
2∑R υR(x)(1+ sR tan �R), (A.29)

where sR ) 1 for R ) A and sR ) -1 for R ) B. The δ-function
character of υR(x) and the definitions of �A and �B of eqs A.19
and A.20) were also taken into account in arriving at eq A.29.
Because the molecular wave function ψM(x) satisfies

-1
2

d2ψM(x)

dx2
+ [υA(x)+ υB(x)]ψM(x)) µMψM(x),

(A.30)

Equation A.29 can be transformed to

υP(x))-1
2{ tan �(x)[ 2

ψM(x)

dψM(x)

dx
d�(x)

dx
+ d2�(x)

dx2 ] +
(d�(x)

dx )2} + 1
2∑R υR(x)(1- sR tan �R). (A.31)

Using the Euler eq A.16 for �(x), υP(x) can be further expressed
as

υP(x))-1
2(d�(x)

dx )2
+ 1

2∑R υR(x)[1- sR tan �R(1+

cos 2�R)], (A.32)

Finally, by using eqs A.23 and A.25, we note that in the
internuclear region |x| < R/2, d�(x)/dx is simply proportional
to ψM

-2(x), yielding

υP(x))-1
2

ZA
2ψM

4 (-R ⁄ 2) cos2 2�A

ψM
4 (x)

θ(R ⁄ 2- |x|)+

1
2∑R υR[1- sR tan �R(1+ cos 2�R)], (A.33)

where θ(y) () 0 for y < 0 and )1 for y > 0) is the Heaviside
step function. Equation A.33 correctly reduces to the partition
potential of 1DH2

10 when ZA ) ZB.

F: Proof That Rocc Is Proportional to ln ∆Z for Small ∆Z

We expect that Rocc, the nuclear separation at the crossover from
covalent to ionic behavior, goes to infinity as ∆Z V 0. There,
the fragment wave functions must approach the free-atom wave

functions, and the tight-binding LCAO must be a good ap-
proximation to the molecular orbital. We can thus write

ψM(x))AψA
0(x)+BψB

0(x) (A.34)

where the ψR
0(x) are the orbitals of the isolated atoms, eq 2.1.

Taking matrix elements of the molecular Hamiltonian yields
equations for A, B, and the molecular energy EM:

[EA
0 -EM + υB

AA]A+ [(EB
0 -EM)SAB + υA

AB]B) 0

(A.35a)

[(EA
0 -EM)SAB + υB

AA]A+ [EB
0 -EM + υA

BB]B) 0,

(A.35b)

where the ER
0 are the energies of eq 2.2, υA/B

R� are matrix elements
of the A/B potentials of eq A.11, and SAB is the overlap (ψA

0, ψB
0).

In evaluating all quantities except EA - EM and EB - EM, we
can take the limit ∆Z V 0. The result is

SAB ) SBAf S ∼ ZRe-ZR

υB
AAf υA

BBf υd ∼ -Z2e-2ZR

υA
ABf υB

BAf υ0 ∼ Z2e-ZR

The complete solution of eqs A.35a and A.35b shows that S
enters into EM, A, and B as 1 - S2 and SVd which become
exponentially small corrections as ∆Z V 0, R v ∞. Similarly Vd

enters only in the combination SVd and can be neglected as well.
Thus the equations for A and B simplify to the classic
bonding-antibonding equations

(EA -EM)A+ υ0B) 0 (A.36a)

υ0A+ (EB -EM)B) 0 (A.36b)

The bonding eigenvalue is

EM ) 1
2

(EA +EB)- { [1
2

(EA -EB)]2
+ υ0

2} 1⁄2
(A.37)

and

B
A
)

EM -EA

V0
(A.38)

Inserting eq A.37 into eq A.38 and rearranging gives

B
A
)�1+ (EB -EA

2υ0
)2

- |EB -EA

2υ0 |. (A.39)

Now, because EB - EA ) Z∆Z and υ0 ) -Z2e-ZR, then

B
A
)�1+ (∆ZeZR

2Z )2

- ∆ZeZR

2Z
e 1. (A.40)

Thus

B
A
) f(y)e 1, y ≡ ∆Z

2Z
eZR

A) [1+ f(y)2]-1⁄2

The molecular density is

nM(x))NMψM(x)2 )NM[A2ψA
2(x)2 +B2ψB

2(x)+

2ABψA(x)ψB(x)])
NMZ2

1+ f(y)2
[g1(x)+ g2(x)], (A.41)

where
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g1(x)) e-2Z|x| + f2(y)e-2Z|x-R|

g2(x)) 2f(y)e-Z(|x|+|x-R|)

It can be checked that g1(x) always exceeds g2(x) and becomes
exponentially larger than g2(x) as x departs from (1/2)R - 1/2
[ln f(y)]/Z. The cross term in eq A.41 can then be neglected
and nM(x) is thus of the form obtained from PT: nM(x) )
NMA2ψA(x)2 + NMB2ψB

2(x), so that 2A2 can be identified with 2
- ν and 2B2 can be identified with ν, implying that

f2(y)) ν
NM - ν

. (A.42)

We have chosen ν ) NM/3 to define Rocc′ . That implies that f(y)
) 1/�2 at Rocc′ for NM ) 1 [or f(y) ) 1/�5 for NM ) 2]. This
leads to the observed behavior of Rocc′ in Figure 15:

Rocc
′ ) 1

Z
ln Z- 1

Z
ln(√2∆Z) (A.43)
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